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ABSTRACT

The effects of rotation on turbulent, compressible convection within stellar envelopes are studied

through three-dimensional numerical simulations conducted within a local f-plane model. This work
seeks to understand the types of differential rotation that can be established in convective envelopes of
stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with

depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms
that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced

by convection influenced by Coriolis forces. The compressible convection is considered for a range of
Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent
flow conditions under weak and strong rotational constraints.

When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convec-
tion leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations
between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, inter-

pretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting
turbulent convection involves complicated and contorted fluid particle trajectories, with few clear corre-
lations between vertical and horizontal motions, punctuated by an evolving and intricate downflow
network that can extend over much of the depth of the layer. Within such networks are some coherent
structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent

alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the prin-
cipal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of
such coherent structures that can persist amidst more random motions is a characteristic of turbulence
with symmetries broken by rotation and stratification. Such structure is here found to play a crucial role
in defining the mean zonal and meridional flows that coexist with the convection. Though they are
subject to strong inertial oscillations, the strength and type of the mean flows are determined by a com-
bination of the laminar tilting and the turbulent alignment mechanisms. Varying the parameters pro-
duces a wide range of mean motions. Among these, some turbulent solutions exhibit a mean zonal
velocity profile that is nearly constant with depth, much as deduced by helioseismology at midlatitudes
within the Sun. The solutions exhibit a definite handedness, with the direction of the persistent mean

flows often prescribing a spiral with depth near the boundaries, also in accord with helioseismic deduc-
tions. The mean helicity has a profile that is positive in the upper portion of the domain and negative in
the lower portion, a property bearing on magnetic dynamo processes that may be realized within such
rotating layers of turbulent convection.

Subject headinos: convection -- stars: interiors stars: rotation Sun: rotation -- turbulence

1. INTRODUCTION

Late-type rotating stars like the Sun possess convective
envelopes in which highly turbulent motions are
responsible for transporting heat, for redistributing angular
momentum, and for building and dispersing magnetic fields.
Theoretical descriptions for such turbulence pose funda-
mental difficulties, the greatest of which is that the active
dynamical scales of motion span very many decades. This
paper, the second in a series, utilizes direct numerical simu-
lations of three-dimensional compressible convection to
study a localized region in a rotating star, trading off overall
domain size for sufficient spatial resolution to describe turb-
ulent flows with some fidelity. The approach adopted here,
as discussed in detail in Paper I of this series (Brummell,
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Hurlburt, & Toomre 1996; hereafter Paper I), deals with a
Cartesian planar subdomain of a true spherical shell using a
local modified f-plane model, as shown in Figure 1. Further,
the physics is simplified as much as possible by dealing with
a perfect gas, thereby seeking to understand the most basic
dynamical effects of compressibility and rotation on the
turbulent convection.

Paper I examined the differences in flow structure and
evolution between laminar and turbulent compressible con-
vection as the rotational influence was varied. It was found

that rotating turbulent convection, much like nonrotating
cases, possesses a seemingly laminar, cellular surface
network that overlies a fully turbulent deeper interior (see

Figs. 2, 6, and 7 in Paper I). The network consists of broad,
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FIG. l.--Local f-plane model positioned at latitude, q_,used to study
flows in a portion of a spherical shell rotating with angular velocity lqo.
The rectilinear coordinate system has the horizontal variables x increasing
eastward and y poleward, the depth z increasing downward; the tilted
rotation vector, _, thus lies in the y-z plane.

warm upflowing regions separated by narrow downflow
lanes of cooler fluid joined in an irregular polygonal
pattern. The presence of inertial oscillations associated with
rotation contributes to considerable mobility in that
network. The deeper turbulent region contains vortex tubes
of many scales and orientations, including some distinctive
large-scale coherent structures of vortical downflow that
span the full vertical extent of the layer. The presence of
such coherent and persistent structures amidst the intense
turbulence of the interior and their tendency to align with
the rotation vector, which at most latitudes is tilted from the
local vertical, were the principal findings of Paper 1. Such
coherent structures yield crucial correlations between verti-
cal and horizontal motions that generate mean Reynolds
stresses and drive mean zonal (east-west) and meridional
(north-south) flows, which are interpretable in turn as differ-
ential rotation and meridional circulations.

It is the object of this paper tO Study the resulting mean
flows in some detail as the imposed parameters determining
the vigor of the convective turbulence and the rotational
influence are varied. Of particular interest is whether some
contact can be made between the classes of mean zonal

flows resulting from highly turbulent convection in these
local models and the differential rotation profiles, with

depth and latitude within the solar convection zone being
deduced from helioseismology (see review by Gough &
Toomre 1991). Such observations of the acoustic p-mode
oscillations of the Sun have shown that the rotation profiles,
obtained by inversion of frequency splittings of those modes
(Libbrecht 1989; Brown et al. 1989; Tomczyk, Schou, &
Thompson 1995; Thompson et al. 1996), are notably differ-
ent from earlier predictions based on full spherical shell
simulations of solar convection (e.g., Gilman & Miller 1986;
Glatzmaier 1987). The convection in such global numerical
simulations of rotating convection is dominated by colum-
nar ceils oriented in the north-south direction, whose tilting
yields Reynolds stress terms that drive the zonal flows and
thus form the differential rotation. These convection models

predicted a zonal velocity profile that held the angular
velocity nearly constant along the axes of the columnar cells
and thus nearly constant on cylinders aligned with the rota-
tion axis, decreasing With depth in the equatorial plane.
Heiioseismology suggests that the Sun operates differently,
for its angular velocity at high latitudes in the convection
zone appears to increase with depth, at midlatitudes is

nearly constant on radial lines, and near the equator first
increases and then slowly decreases with depth. At the base
of the convection zone, such latitudinally varying angular
velocity joins to the apparent solid body rotation of the
deeper radiative interior via a strongly sheared adjustment
layer. The recent advent of nearly continuous, full-disk
imaged Doppler observation of solar oscillations from both
the ground-based Global Oscillations Network Group
(GONG) project and from the Michelson Doppler Imager
(SOI-MDI) instrument on the SOHO spacecraft should
enable more detailed assessment of large-scale mean flows
within the Sun that can both inspire and challenge our
understanding of turbulent dynamics deep within a star
(Gough et al. 1996).

There is currently no resolution of the striking differences
between the solar differential rotation profiles deduced from
helioseismology and those obtained from theoretical
models. Since helioseismic measurements are constantly
improving, this paper seeks to address deficiencies in the
previous numerical models. A plausible explanation for the
discrepancies is that the spatial resolution available for the
computation of rotating convection in full shells confined
the simulations to laminar or mildly turbulent flows. Fully
developed turbulence at Reynolds numbers, R e, of order
10 _z as estimated for the Sun may well redistribute angular
momentum quite differently, thereby yielding other classes
of mean flows and rotation profiles (see Brummell, Catta-
neo, & Toomre 1995). Recent convection experiments
(Heslot, Castaing, & Libchaber 1987; Castaing et al. 1989)
and computations (DeLuca et al. 1990; Werne et al. 1991 ;
Werne 1993), including some on compressible convection
(Cattaneo et al. 1991), have shown that different regimes of
turbulence can exist with subtly varying heat transport
properties. These are often associated with the surprising
degree of structure that may be embedded in otherwise
chaotic flow fields (see also She, Jackson, & Orszag 1990;
Vincent & Meneguzzi 1991 ; Porter, Pouquet, & Woodward
1994), arising from self-organizing processes (inverse
cascades). Turbulent compressible convection, with sym-
metry broken by both rotation and stratification, appears
to behave likewise, as exhibited in Paper I with the emer-
gence of coherent structures once the flows become suffi-
ciently turbulent. A novel turbulent transport mechanism

for angular momentum, much like those responsible for
new forms of heat transport, has the potential to resolve the
solar differential rotation puzzle.

This paper focuses on analyzing the properties of the
mean zonal and meridional shearing flows that can be
induced by effects of rotation on turbulent compressible
convection. Paper I explained in some detail the motivation
for such simulations of rotating convection in localized
domains, and thus § 2 restates the formulation only briefly.
After reviewing the general properties of turbulent convec-
tion, § 3 in turn discusses the time dependence of the mean
flows that are realized, their behavior as the degree of turbu-
lence or the rotational influence is modified, and then
assesses how the topology and structure of the convection
yields the Reynolds stresses essential for both the gener-
ation and maintenance of the mean flows, finally examining
the spiralling of the mean flows with depth and the mean
helicity that is realized. Section 4 discusses the implication
of these mean flows upon the deductions being drawn from
helioseismology concerning the overall dynamics of the
solar convection.
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2. FORMULATION

The model used here for compressible convection in a
rotating plane layer involves a rectilinear domain contain-
ing a fully compressible but ideal gas confined between two
horizontal, impenetrable, stress-free boundaries a distance d

apart. The upper surface is held at a fixed temperature, To,
whereas a constant temperature gradient, A, is maintained
at the lower boundary. The flow is assumed to be periodic
in the two horizontal directions. The specific heats, ep and
c_, shear viscosity,/z, thermal conductivity, K, and gravita-
tional acceleration, g, are assumed constant. In hydrostatic

balance, the temperature, Tp, density, pp, and pressure, p_,
can exist in a polytropic state,

TJT o = (1 + 0_/d), (la)

Pp/Po = (1 + 0_/d)", (lb)

PJPo = (1 + 0_/d) "+' , (lc)

for the vertical coordinate 0 < _' < d, where Po is the density
at the upper boundary, Po =(cp-c_)ToPo, m=-1

+ g/A(cp - c_,) is the polytropic index, and 0 = dA/T o. The
equations for the conservation of mass, momentum, and
energy and the equation of state for a perfect gas can be
nondimensionalized using d as the unit of length, the iso-

thermal sound crossing time [dZ/(Cp- cv)To] 1/2 as the unit
of time, and To and Po as the units of temperature and
density, to produce

c3tp + V • pu = 0, (2a)

Otpll q- V • pun q- CkP r TI/2(_ -_ × pig)
--ao _--

= --Vp + P, Ck[VZu + ½V(V. u)] + 0(m + 1)p_, (2b)

7CR
_,T+u'VT+(7-1)TV'u=--V2T+ V_, (2c)

P

p = pT. (2d)

Here u = (u, v, w) is the velocity, T, p, and p are the tem-
perature, density, and pressure, respectively, and V, =
[(7 - 1)Ck/p]P,_iu_(O_uj + c?_u_- -_V "uf_j) is the rate of
viscous heating. Rotation enters the momentum equation in
a modified f-plane formulation in this local model via the
rotation vector,

f_ = _o _ = (f2_, f_y, f2z) = (0, f_o cos _b, -f2 o sin _b),

(3)

where _b is the latitudinal positioning of the planar domain
on the sphere, as illustrated in Figure 1. The rotation sense
here has been changed for ease of comparison with the solar
case since, in the z-downward coordinate system, positive
rotation is clockwise when viewed from above the north

pole. This paper adopts the more familiar counterclockwise
rotation sense by setting f20 --, -f2 o (equivalently u _ -u,
x _ - x) when exhibiting the results.

The dimensionless numbers parameterizing the problem

are the Rayleigh number,

R"(z) - O2(rn + l ) [P_C_ 1 (m + l )(7 -1)l( l + Oz)2m-17 , (4)

involving the thermal dissipation parameter, Ck =

K/{dpo %[(%- c,,)To] 1/2} (the ratio of the sound crossing
time to the thermal relaxation time), and 7 = Cp/C_(the ratio

of the specific heats), together with the Prandtl number,
P_ = IJcp/K (the ratio of the diffusivities of heat and
momentum), and the Taylor number,

4f_2d 4 (p)2T"°- (_o-_ - Poo T°. (5)

Here R. and To (the more usual Taylor number) are quoted
as evaluated at midlayer in the initial polytrope.

A measure of the influence of the rotation on global
motions derived in terms of these parameters is the convec-

tive Rossby number,

( R_'] _/2
Ro = \T_ PJ " (6)

A value of Ro less than unity implies a significant influence
of the rotation, since then in the time a fluid element is
driven across the layer by buoyancy it can execute more
than one inertial rotation. A true Rossby number, Ro,, may
be determined as the ratio of the root mean square (rms)
vorticity generated in the convection to that of the rotating
frame, i.e.,

Ro, = co_/2_ o . (7)

It is found here that Ro and Ro, are generally comparable.
At the upper and lower boundaries, it is required that

pw=c3 U=0zV=0atz=0, 1, (8a)

T= 1 atz=0, c_,T=0atz= 1, (8b)

which ensures that the mass flux and mechanical energy flux
vanish on the boundaries. The total mass in the computa-
tional domain is conserved, and the imposed heat flux is the

only flux of energy into and out of the system.
Averaging the momentum equations (eq. [2a]-[2d]) over

the two periodic horizontal directions, x and y, produces
the equations for the mean zonal (east-west) and meridional
(north-south) flows:

63t_ = I Oz -RU-W -- f z -_ q- P r C k t__ _l , (9a)

_ , -_ = - O_-fi-_ +L-tiff + P, Ck 32z_ . (9b)

Here, an overbar denotes the horizontal average and f_ =
P_Ck T1/2 sin q_ is the inertial frequency for horizontal

--a 0

motions.
Equations (2a)-(2d) are solved numerically as an initial

value problem by a semi-implicit, hybrid finite-difference/
pseudospectral scheme. Spatially, the vertical discretization
is by fourth-order finite differences, while the horizontal
directions are represented by a Fourier collocation method.
The time discretization utilized an explicit, two-level
Adams-Bashforth scheme for all terms apart from the
thermal conduction, for which a Crank-Nicholson scheme
is used to avoid restrictive time stepping.

3. RESULTS

As summarized in Table 1, a series of runs has been made
in the (Ro, T_, P,, qS) parameter space of the local model. All
simulations were computed with an aspect ratio of 4:4: 1,
with 7 = 5/3, and with an initial density contrast of Zp = 11
corresponding to a polytrope with 0 = 10 and m = 1. The
layer then spans roughly five pressure scale heights initially,
relaxing to a typical value of Xp _ 20 as time progresses.
The Rayleigh number is varied by altering Ck (effectively

changing the fluid) while keeping P_ small so that the code
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TABLE 1

PARAMETERS FOR THE f-PLANE ROTATING CONVECTION SIMULATIONS

(R, - R o) EdEk
Case R a T_ P, ¢b (n,,, n:,, nz) Ro /R,, R,,_ R .... Re_" (%)

L1 ...... 5 x 104 3 x 104 10 -t12 45 64 x 64 x 32 2.29 9.23 3.06 141 372 2.13

L2 ...... 5 x 104 3 x 104 10 -tl_ 90 64 x 64 x 32 2.29 2.78 2.40 120 318 0.40
L3 ...... 5 x 104 3 x 104 10 -lj2 15 64 x 64 x 32 2.29 21.5 4.36 169 377 8.63

R0 ...... 5 x 105 0 0.1 0 192 x 192 x 130 _ 420 14.03 925 2913 0

RI ...... 5 x 105 l0 s 0.1 45 96 x 96 x 64 7.07 182 12.85 932 2972 2.90

R2 ...... 5 x l0 s 106 0.1 45 96 x 96 x 64 2.24 111 8.72 764 2451 1.29

R3 ...... 107 5 x 107 0.1 45 256 x 256 x 129 1.41 109 11.33 2068 762i 0.46

R4 ...... 5 x l0 s 107 0.1 45 96 x 96 x 64 0.71 29.2 7.49 609 2068 0.68

R5 ...... 5 x 105 107 0.1 15 96 x 96 x 64 0.71 52.9 4.01 784 2383 3.72

R6 ...... 5 × 105 107 0.1 75 96 x 96 x 64 0.71 18.0 3.30 675 2053 3.90

TI ...... 5 × 106 107 0.I 45 192 x 192 x 96 2.24 292 11.45 1703 5828 0.76

T2 ...... 107 2 x 107 0.1 45 256 x 256 x 130 2.24 378 11.83 2149 8108 0.79

operates in the regime where shear instabilities and vortex
stretching are emphasized. The degree of instability, as mea-
sured by the departure of the Rayleigh number from the

linear critical value, R,, - Rac , is shown in Table 1.
The degree of turbulence achieved in the resulting solu-

tions is indicated by a Reynolds number, which measures
the relative balance between advective and diffusive pro-
cesses"

U(z)_(z)f
Re(z ) - , (10)

Ck Pr

where l and U(z) are a typical length and velocity, respec-
tively. There is not a unique choice for these typical values.
The length scale may be chosen as the depth of the domain,
and a typical velocity may be evaluated as the (time-aver-
aged) rms velocity, U .... or as the maximum velocity
attained in the box, Umax. Table 1 shows values of R .... and
R .... for these two choices, respectively. It is also useful to
provide a Reynolds number, Re,, based on the Taylor
microscale, 2, and Urms. The Taylor microscale, defined as

,_-2(z)= V.(z)/Urm_(Z), (l l)

represents the scale of dissipation associated with the rms
velocity rather than the scale of the domain. These measures
still indirectly include an indication of the stabilizing effect
of rotation" increased rotational influence (for fixed R,)
decreases the scales of the fluid motion and therefore

decreases any Reynolds numberl Values of Re_ greater than
about 10, or R .... and R .... of about 103 or greater, indicate
solutions that are at least moderately turbulent.

The solutions described in Table 1 are divided into three

categories, which are denoted by a prefix of either L, R, or
T. Cases labeled L are laminar, whereas all other cases are

turbulent to varying degrees. Cases labeled T are the most
vigorously turbulent cases. Cases R0-R4 are a series of
solutions in which the rotational influence (as measured by

Ro) increases for a fixed latitude, whereas cases R4-R6
maintain a strong rotational influence while varying _b.

3.1. Nature of Turbulen t Rotating Convection

As discussed in Paper I, these simulations off-plane con-
vection draw on earlier nonrotating three-dimensional
studies working with perfect gases (see, e.g., Cattaneo et al.
1991; Bogdan, Cattaneo, & Malagoli 1994). Increasing the
degree of turbulence results in a striking transition from
laminar overturning flow throughout the domain to a state

in which the upper surface remains as a connected network

of downflows surrounding broad upflows, yet disguising
highly turbulent flows below. The convective flows near the
upper surface, as in the perspective view of vertical veloci-

ties in Figure 2 (Plate 48), consist of a cellular network atop
a fully turbulent interior, punctuated by vertically coherent
structures emanating from the upper surface. The turbulent
domain consists of fast, small-scale, nearly isotropic
motions; the nearly laminar flow in the surface region is a
consequence of the expansion of fluid elements rising
through a rapidly decreasing density stratification near the
top. Powerful downflows occur at the interstices of the
upper network. These downflows pierce the interior turbu-
lence, spanning the multiple scale heights from the top to
the bottom of the domain. Despite being mobile, especially
in the rotating case, these strong downflowing structures
are spatially and temporally coherent, coexisting with the
interior turbulence for many turnover times. The turbulent
but structured nature of the flow is seen clearly in a volume
rendering of enstrophy (vorticity squared) shown in Figure
2. The coherent downflows are strong, sizeable vortices that
emanate from vorticity concentrated at the interstices of the
upper network and punctuate the interior, where they are
buffeted by much smaller, randomly orientated vortex
tubes. The presence of such multiple scales is also revealed
in horizontal planar rendering of both enstrophy and tem-
perature fluctuations near the top of the layer, where the
appearance is more ordered, and near the bottom, where
the broad downflow systems are laced with intense vortex
filaments (see Fig. 3 in Paper I and Figs. 4 and 5 in
Brummell et al. 1995).

Coriolis forces change the nature of both the surface
network and the turbulent interior in such convection. With

the inclusion of rotational constraints, the scales of motion
throughout are reduced, and the surface network becomes
more curvaceous, less connected, and more time dependent.
The overall mobility of the cellular pattern is due to inertial
motions of the surface flows induced by the Coriolis forces.
Spin-up of plumes under the rotational influence forces all
downflows to be cyclonic and leads to increased vertical
vorticity, often to the extent that an ensuing evacuation of
the downflow vortex leads to buoyancy reversal and self-
destruction of the structure, providing a new method for cell
creation. More importantly, Paper I reveals that tilted flow
structure (involving nonvertical cellular boundaries,
streamlines, and coherent structures) can be readily
achieved in compressible convection under the influence of
rotation. When the flow is turbulent, the small-scale, fast-
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overturninginteriormotionsaremorenearlyisotropicand
decorrelatefromtheinertialinfluence,leavingonlystruc-
tureswithsignificantspatialandtemporalcoherenceto
sensetherotation.Thestrongvorticalcoherentplumesthus
tendtoformnaturallyinalignmentwiththetiltedrotation
vector.

Givensuchgeneralpropertiesof turbulentconvection
studiedinPaperI, themainaimofthispaperisto examine
thepersistentzonalandmeridionalmeanflowsthat are
producedbytheinteractionofrotationwiththecompress-
ibleconvection.Bydefinition,zonalmotionsarein thex-
direction (east-west) and meridional motions are in the
y-direction (north-south). Averaging the horizontal velocity
fields, u(x, y, z, t) and v(x, y, z, t), found at any typical time, t,
in each horizontal direction produces the mean zonal,

fi(z, t), and meridional, _(z, t), flows. The vector sum of these
flows is an overall mean flow, U(z, t), at that time. Averag-

ing over a long period in the simulation reveals the persist-
ent vector mean flow, (U), made up of components (u)
and (v) that are functions of z alone. Here, an overbar
denotes an average over the horizontal directions x and y,
and angle brackets imply a further averaging over time. The
flows (u) and (v) represent the typical steady horizontal
drift velocities at any depth. They are the local model equiv-
alents of the zonal and meridional motions at the current

latitude, q_, in the full spherical fluid shell and exhibit the
differential motion with depth (equivalent to radius) at that
latitude. By further examining a range of qS, they can also

suggest the variation of such flows with latitude.
Figure 3 shows an example of the mean flows from case

R4, with (u) and (v) shown as solid lines. Horizontal bars
indicate the rms variation, and dotted lines indicate the

peak variation of the mean velocities for the duration of the
time averaging. In this solution, the zonal flow is primarily
prograde (in the same sense as the rotation) with intervals of
retrograde flow near the boundaries. The meridional flow is

equatorward at the surface and poleward at the bottom but
reverses away from the boundaries. In the absence of rota-
tion, even though the equations permit mean flows, none
have been realized in these simulations. With f_ = 0, the
creation of mean motions would require an internally gen-

erated spontaneous (reflectional) symmetry breaking by a
mechanism like that of Howard & Krishnamurti (1986), for

example. With the rotating f-plane model positioned away
from the pole (_b # 90°), the symmetry of the flow is auto-
matically broken, and any solution must have definite
handedness. All of the rotating solutions presented here
therefore possess mean zonal and meridional flows, of
which Figure 3 is an example. The mean flows are signifi-
cant, although not dominant over the convection. Indeed,

the percentage of kinetic energy contained in the mean
flows, E--_,as compared to the total kinetic energy, Ek, is less
than 10% and typically only a few percent for the cases
studied here (see Table 1). The properties of the mean flows,
however, vary strongly with the degree of turbulence, the
rotational influence, and the latitudinal positioning of the

f-plane model.

3.2. Time Dependence of Mean Flows

Many of the cases studied here possess a Rossby number,
Ro, of order unity for which Coriolis and convective effects
are of comparable importance. In this intermediate regime,
inertial oscillations may be expected (e.g., Batchelor 1967;
Pedlosky 1979). If an area of fluid diverges, it acquires a

( 11 .>
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FIG. 3.--The horizontal- and time-averaged (a) zonal and (b) merid-

ional mean flows, (u(z)) and (v(z)) respectively, for the simulation R4. The
horizontal bars show the rms variation of the mean over the time of

averaging for certain depths, and the dotted line shows the maximum and
minimum values of that variation.

tangential acceleration (perpendicular to the radial expan-
sion and the rotation vector) from the Coriolis force,

forming an anticyclonic vortex. The resulting circular accel-
eration produces its own local centripetal force, which will
tend in turn to contract the vortex. The interaction of the

expansion and contraction produces an oscillation with fre-
quency equal to that of the imposed rotation. For horizon-
tal motions, this inertial frequency about the vertical isfz =

2f_z = P, Ck T_ 2 sin _b. The mean flows here exhibit such
oscillations, as seen in Figure 3 where they are largely

responsible for the significant rms fluctuations and the large
departures of the peak values from the time-averaged value.
Figure 4 presents a clearer example of this time dependence
of the mean flows. Phase plots of the mean zonal versus the
mean meridional momenta are exhibited for three depths in
the simulation T1, together with the corresponding time
series and frequency spectra. The circular locii in the phase

plots describe the inertial oscillations of the means, a signa-
ture that persists for all depths (although the temporal
variation is smoother near the boundaries) and all solu-
tions. In all cases studied, the measured spectra have a peak
power close to that of the predicted inertial period, which
for case Tt in Figure 4 is q = 2n/f_ = 7.7. The amplitude of
the oscillations may be quite large compared to that of the
underlying time-averaged mean flow (solid squares in the
phase plots), possibly encompassing the origin so that
the mean vector flow may reverse in time purely due to the
inertial oscillations. Noting that such inertial time depen-
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dence is a prominent part of the resulting mean flows, the
remainder of this paper concentrates on unravelling the
nature of the persistent mean flows, (u(z)) and (v(z)),

formed by time-averaging the components over many iner-
tial times, Ti.

3.3. Increasing the Degree of Turbulence

The characteristics of the mean flows that result are

affected by the degree of turbulence achieved by the convec-

tion (indicated by R_), by the influence of rotation imposed
(as measured by Ro), and by the latitudinal positioning of
the model domain. The nature of the mean flows is first

examined for solutions that retain a comparable rotational
influence while the level of turbulence varies, via cases L1,
R2, T1, and T2. The degree of turbulence in these simula-
tions, measured after the fact by the Taylor microscale Rey-

nolds number, R,,, ranges from 3 (laminar) to 12
(moderately turbulent) in a global average over the whole



No.2,1998 TURBULENTCOMPRESSIBLECONVECTIONWITH ROTATION.II. 961

domain,correspondingto arangeofabout1402150inthe
large-scaleReynoldsnumber,R .... . This succession of cases
is achieved by suitably altering R a and To for fixed Pr (see
Table 1) so as to increase the degree of supercriticality (and
therefore the nonlinearity) while keeping their ratio roughly
constant, thus fixing the value of the thermal Rossby

number, R o. For these cases, R o remains around 2.24, which
indicates a moderate rotational influence. The mean flows,

(u) and (v), generated are shown against depth in Figure
5, accompanied by the local measure of turbulence, Rea.

Before examining the differences between the various
solutions in Figure 5, it should be noted that all of the mean
flows exhibit a reversal in direction at a depth of around
z = 0.75. This crossover point is a fairly stable feature for
these simulations since they share the same imposed density
stratification. Earlier two-dimensional simulations

(Hurlburt, Toomre, & Massaguer 1984) showed that the

density contrast, Zp, imposes an asymmetry on laminar
compressible motions, whereby the roll-cell centers are
skewed toward the lower boundary. The cell centers appear
to lie at the level of the center of mass of the mean stratifi-

cation, i.e., that depth where there is as much mass above as
below. Intuitively, an extension of the finite laminar roll to
infinite width would imply that the crossover of the mean
flows should also be related to this point. Indeed, on

examining the mean density profiles for many of the solu-
tions here, this seems to be the case. For example, the time-
averaged mean density of simulation T1 contains as much
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FlG. &--Plots of the mean velocity profiles, (a) (u(z)) and (b) (v(z)), in
the zonal and meridional directions respectively, for simulations with a
similar degree of rotation influence but varying degrees of turbulence (cases
L1, R2, T1, and T2). The degree of nonlinearity is measured in terms of the
Taylor microscale Reynolds number, which is also shown in (c) as a func-
tion of depth for each case.

mass above z = 0.72 as below. Although the means are, in
some sense, still smooth laminar flows, it is of interest that
these highly turbulent solutions still exhibit this simplified
behavior. Integrating the (steady) mean flow equations (eqs.
[9a] [9b]) with stress-free boundary conditions reveals the
constraint that there must be zero total horizontal mass flux

in each direction,

fzz=, f:=,_-fi c?z = _-_ az = 0. (12)
=0 =0

This forces the mass fluxes to be either trivially zero (no
mean flow at all) or to possess at least one zero-crossing at
some depth. For a zero-crossing to lie at the center of mass
then requires a remarkably well-balanced (mean) velocity
distribution.

In Figure 5, both the zonal and meridional mean flows
decrease in absolute amplitude throughout most of the

depth as the degree of supercriticality is increased via solu-
tions L1, R2, T1, and T2. The meridional flows, (v), main-
tain the same shearing profile with depth with the increase
in degree of nonlinearity, although their amplitude is
reduced. The zonal flows, (u), are reduced from strong
shear flows in the more laminar cases (L1 and R2) to pro-
files that have only small amplitude in the interior, with
regions of strong shear near the boundaries at the highest
degrees of forcing shown (T1 and T2). Away from the upper
thermal boundary layer, these more turbulent solutions
have the sense of (u) reversed from that in the laminar
solutions. The production of zonal and meridional mean

flows appears to differ at high degrees of nonlinearity, with
the meridional motions retaining some laminar character,
while the zonal motions switch to a novel response.

It is intriguing that cases T1 and T2 exhibit very similar
properties. These cases are both highly turbulent and share
the same convective Rossby number, R o, yet differ by a
factor of 2 in the actual values of R, and To. The similarities
of the mean flow properties are striking and thus encour-
aging, since they may suggest that a regime of rotating turb-
ulence exists where these results may be robust. That is,
these findings may hold for higher R,, provided that the
rotational influence, R o, is kept the same by scaling T, and
P,. In much of the following presentation, the results for
case T2 are omitted for clarity of the figures.

3.4. Increasing the Rotational Influence

The effects of changing the rotational influence while
maintaining an (approximately) fixed degree of nonlinearity
is investigated next. Figure 6 shows plots of the mean zonal
and meridional flows and the associated Taylor microscale
Reynolds numbers as functions of depth for cases R0-R4.
The thermal Rossby number ranges through the values
Ro = 0% 7.07, 2.24, 1.41, and 0.71 in these cases, which indi-
cates an increase in the influence of rotation on the flow.

Although the degree of supercriticality is not identical for
all of these solutions, as is exhibited in the plot of Re,, its
variation is less than a factor of 2 for a range of parameters
(T_, Ra) that span (at least) 2 orders of magnitude. In partic-

ular, the values of Re, are similar for cases R0, RI, and R3,
as are those for cases R2 and R4, and so these cases may be

fairly directly compared.
The nonrotating simulation case, R0, possesses no mean

zonal or meridional flows. Mean flows are permitted in the
absence of rotation, although the specific parameters
chosen, such as the aspect ratio of the box, can influence



962 BRUMMELL,HURLBURT,& TOOMRE Vol.493

<u>

0'0 i' i ,." _-

_,.t-. f s r ,\_.,
05 ', ,)

0.06 0.04 0.02 O.O0 0.02 0.04 0.06

<v-'>

0.0__ "---L. ! - _, 1

: \ , _ /
: ", / I 4

_oa • i

1,0 ......... J

000 0,05 O. 10

Re x

0.0 "-'. C_ i

e- \. _x "\-_

RO
RI
R2

_' 0.5 "\ _ _\ .....

,, , ._ .... R3
\....', ,.\ R.I

l.O .............

10 20 30
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(cases R0-R4). The degree of nonlinearity is again exhibited in (c) as the
Taylor microscale Reynolds number with depth for each case.

their production significantly (Rucklidge & Matthews 1993;
Brummell & Julien 1997). The strongest mean flows in
Figure 6 are achieved by the simulation R1 with R o ~ 7.
Strengthening the rotational influence in comparable solu-
tions decreases the absolute amplitude of the mean flows.
This decrease coupled with lack of mean flows for case R0
perhaps indicates that the strongest mean flows would
occur at moderate Rossby numbers, Ro > 7. The general
decrease in amplitude of the means may not be merely
attributed to the stabilizing effect of increasing the Taylor
number since, for example, cases R2 and R3 possess similar
degrees of supercriticality and yet are included in the trend.
The meridional mean flow, <v>, maintains a simple linear
shear profile in the interior as its amplitude decreases with
decreasing Ro, joining strongly sheared reversals of the flow
near the boundaries. Although <u> also exhibits a simple
shear at the higher R o of case R l, in the cases with lower
Rossby numbers (R3, R4) the shear is considerably
weakened to form a nearly constant profile in the interior

accompanied, once again, by shear zones near the bound-
aries. The profile changes direction in the bulk of the inte-
rior as Ro decreases, as was found in the sequence of
increasing degree of turbulence (Fig. 5). However, with a

strong rotational influence, the constant interior profile is
more pronounced, being significantly prograde.

3.5. Varying the Latitude

The solutions discussed previously were all calculated at
midlatitude, _b = 45 °. The latitudinal positioning of the

local domain can also have a substantial impact upon the
development of mean flows. Figure 7 exhibits the resulting
mean zonal and meridional velocity profiles for representa-
tive solutions at various latitudes. Figure 7a shows moder-
ately rotationally influenced (R o = 2.29) laminar cases at
three latitudes, 4_= 15 _, 45 °, and 90 ° (cases L3, L1, and L2,
respectively). Only weak mean flows are achieved when the
domain is positioned near the (north) pole, with far stronger
zonal and meridional means resulting at lower latitudes
where the rotation vector becomes closer to the horizontal.

In this laminar case, both mean flows are feeble (and indeed

may vanish in a long enough time average) at q_ = 90 °.
Changing the latitude to _b = 45 ° increases the peak ampli-
tude of both zonal and meridional means comparably, but a
further shift to _b = 15° amplifies the zonal mean to a strong
shear yet leaves the meridional flow roughly the same.

Figure 7b displays turbulent cases that are strongly rota-
tionally influenced (R o = 0.71) for latitudes q5 = 15°, 45 °,
and 75 ° (cases R5, R4, and R6, respectively). The zonal
mean flows produced in these turbulent cases remain qualit-
ively similar in profile despite the varying latitude. Each
zonal profile exhibits a nearly uniform interior extending
over the range 0.4 < z < 0.8, sandwiched between stronger
boundary shear flows. The meridional mean flows consist
mainly of boundary shear zones with a weak nonuniform
interior. The amplitudes of all these means again increase
with decreasing latitude, much as for the laminar cases.

3.6. Generation of Mean Flows: Topology of the Convection

The generation and maintenance of the zonal and merid-
ional flows is governed by the mean flow equations (eqs.
[9a]-[9b]). The first term on the right-hand side of each
equation corresponds to a generation of the mean com-
ponent through nonlinear interactions of the fluctuating
velocities. These second-order correlations of the velocities

are often referred to as the Reynolds stresses. The second
terms in equations (9a) and (9b) represent a coupling
between the mean horizontal motions by Coriolis forces,
and the third terms correspond to viscous diffusion of the
mean flows. The Reynolds stress terms are the only source
terms in these equations. The vertical derivative of these
stresses, modified by the action of the diffusive terms, deter-
mines the strength of the mean flows produced. The
Coriolis terms serve only to swap energy between the two
mean components and do no net work. In a steady state (or,
equivalently, a long-term time average), equations (9a) and
(9b) reduce to

L-_ = -a_-p--_ + P, Cka2fi, (13a)

L -#-_= a, -yb-_ - P, C ka2,o . (13b)

(Note that for comparison with the solar case, the results
here are presented with f, < 0, since f_o has been replaced
by -f_o or, equivalently, u _ -u). The simulations reveal
that the diffusive terms in equations (13a) and (13b) are
generally small and that the resulting persistent mean zonal
and meridional flows are produced via a balance between
the Coriolis and Reynolds stress terms. A strong correlation
between u and w produces mean meridional momentum; a
similar correlation between v and w produces mean zonal
momentum. Clearly, any mechanism that introduces a net
tilted flow into the system yields a correlation between ver-
tical and horizontal momenta and therefore serves to gener-
ate mean flows. Thus the topology and structure of the
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convective flows are crucial ingredients in the understand-
ing of the Reynolds stress terms and the associated mean
flows.

Paper I showed that tilted flow structures related to non-
vertical particle paths, cell boundaries, and other coherent
structures are realized in compressible convection under the
influence of rotation. However, the resulting correlated
flows differ according to the circumstances. With the tilted
rotation vector of the modified ./=plane model utilized in
these simulations, both horizontal and vertical components

of fZ are present. For laminar convection, the flows are
cellular and the nonlinear production of vertical vorticity
from the convectively driven horizontal vorticity is weak.
Therefore, the action of the horizontal component of
dominates, tilting cellular streamlines in the zonal direction.
This provides a strong correlation between vertical and
zonal motions, which produces a source for persistent
meridional mean flows in the long-term time average.

When conditions are such that the convection is turbu-

lent, the resulting flow structure is different. An example is
shown in Figure 2. Turbulent compressible convection

retains a cellular network of downflowing lanes surround-

ing broad upflowing regions near the upper boundary
where the density stratification decreases rapidly. However,
this laminarized region sits atop small-scale, horizontally
isotropic turbulent motions deeper in the domain where the
vorticity components are well mixed owing to the strong
nonlinear interactions. This turbulent interior is punctuated

by coherent structures, which are the strong vortical down-
flowing plumes emanating from the interstices of the upper
network. The small-scale, fast-overturning interior motions
decorrelate from the inertial influence. An overall reduction

in the amplitude of the mean flows and the momentum
transports with increasing degree of turbulence may then be
anticipated. For laminar convection, strong means are gen-
erated by the action of rotation on the large-scale over-
turnings, producing bulk tilted streamlines and cellular
boundaries (see discussions of rotating Boussinesq convec-
tion in Hathaway, Gilman, & Toomre 1979; Hathaway,
Toomre, & Gilman 1980; and Hathaway & Somerville

1986). Increasing the Reynolds number decreases the scales
of motion, reduces their turnover time, and decorrelates the
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velocities. Such small-scale random eddies do not not sense

the rotation since their lifetime is small compared to the
rotation time, and therefore their effective Rossby number is
high. This loss of coherence, due to the increase of turbu-
lence and the decoupling of the motions from the rotation,
substantially reduces the Reynolds stress correlations

required to build the mean flows, and thus the overall
amplitude of the means may be expected to decrease.

However, Paper I showed that a novel form of corre-
lation can be induced when the fluid flow takes on its turbu-

lent topology and the rotational influence is potentially
strong. While small-scale interior motions decorrelate,
structures with significant spatial and temporal coherence
may still sense the rotation. The coherent structures that
pierce the turbulent flow over multiple density scale heights
tend to form naturally in alignment with the rotation
vector. Since Y_ lies in the y-z plane in this model, such
turbulent alignment encourages correlations between verti-
cal and meridional velocity components and thus can gen-
erate Reynolds stresses that drive zonal mean flows in the
long-term average. The turbulent alignment of coherent
structures cannot contribute directly to steady meridional
mean flows owing to the orientation of the rotation vector.
One of the more intriguing results exhibited in these solu-
tions is that although both meridional and zonal mean
flows become reduced in amplitude in the turbulent cases,
the zonal flow retains a weak but roughly constant profile
with depth (at least away from the boundaries) as the con-
vective Rossby number is decreased. Though there is a
general decorrelation associated with the turbulent
motions, an imprint of the rotationally aligned coherent
structures remains, providing the dominant Reynolds stress
contributions that drive the zonal flow profile.

Positioning the domains at higher latitudes may be
expected to diminish both laminar and turbulent pro-
duction of the mean flows because the y-component of
decreases in amplitude as the domain is moved toward the

pole. If the flow is laminar, then the tilting action of ffty on
the streamlines and cellular boundaries is decreased. In the

turbulent regime, as the rotation vector becomes more ver-
tical, the aligned strong vortical structures become less
tilted, and the resulting correlations between meridional
and vertical velocities are reduced. Hence, positioning the
f-plane domain nearer the pole weakens the source corre-
lations for mean flows and thus reduces their amplitude
while retaining the turbulent or laminar shape of the profile.
At low latitudes, however, the laminar and turbulent

mechanisms can both act to strengthen the mean flows,
since the horizontal component of the rotation vector is
now the dominant element. Strong laminar zonal tilting
then provides enhanced uw correlations and meridional
mean flows. Turbulent alignment here produces elongated
coherent structures nearly parallel to the y-axis, providing
stronger vw correlations and thus zonal mean flows. These
results are reflected in Figure 7.

3.7. Generation of Mean Flows: Reynolds Stresses

Examination of the Reynolds stress sources for the gener-
ation and maintenance of mean motions in highly turbu-

lent, compressible convection is clearly desirable but
presents a number of challenges. The turbulent flows here
are highly variable and intermittent, which makes corre-
lations hard to isolate amidst the chaotic background. The
coherent structures, which can provide some correlation,

occupy only a small fraction of the whole domain, and thus
their effects can easily be lost in any sizeable average. Such
downflow structures also possess strong vertical vorticity,
which provides a significant local correlation between the
single-signed vertical motion and both senses of the hori-
zontal motions. The small underlying drift correlation must
be extracted from these nearly cancelling, large correlations
by integration over particle trajectories. In addition, the
flow is strongly time dependent, including the inertial oscil-
lations encouraged by the rotation that exhibit large ampli-
tude excursions compared to the overall persistent mean, as
in Figure 4. All these effects accumulate to make instantane-
ous estimates of the Reynolds stress sources noisy and
therefore relatively useless, and thus long-term time aver-
ages must be used.

Displaying the time-averaged source terms from equa-
tions (9a) and (9b) (the z-derivatives of the Reynolds
stresses) supplies no new information, since they return pre-
cisely the mean momenta, suitably scaled and with a small
error due to the diffusive term (as highlighted by eqs. [13a]
and [13b]). Instead, Figure 8 presents the Reynolds stress
correlations themselves time-averaged over many turnover
and inertial times in some representative calculations. Both
zonal, puw, and meridional, pvw, Reynolds stresses are
shown averaged horizontally and in time for the cases
exhibiting varying degrees of turbulence and varying rota-
tion (corresponding to Figs. 5 and 6). For relatively laminar
(L l, R2) and weakly rotationally influenced (R 1, R2) flows,
there is a generic shape to the profiles. The stresses are zero
at the boundaries and exhibit a smooth positive maximum
in the interior. This reflects the amplitude variations of the
fluctuating velocities with depth rather than a higher degree
of correlation, since these values are not scaled by the
amplitudes. The positive correlation is an indication of the
dominant laminar tilting of streamlines and cellular struc-
ture, as explained in detail in Paper I. Increasing the degree
of nonlinearity reduces the overall amplitudes owing to a
general decorrelation of motions associated with the
increasingly chaotic flow. However, for turbulent motions
with moderate (T1) or strong (R3, R4) rotational influence,
the profiles can change significantly, particularly in the
resulting meridional stresses. Indeed, (pvw) changes sign
from positive to negative in the interior in going from the
relatively laminar simulations (L1, R2) to the more turbu-
lent ones (T1) and also with the increasing influence of the
rotation between the weakly (R1, R2) and strongly (R3, R4)
influenced solutions. The associated zonal stresses, {puw),
in general remain positive in the interior. This change of
sign in the meridional Reynolds stress (and the equivalent
sign switch in the associated scaled correlations shown in
Table 2 of Paper I) reflects the increased importance of the
turbulent alignment of coherent vortical structures with
increasing degree of turbulence and decreasing Rossby
number. As such structures become aligned with the rota-

tion vector, they provide more definite negative pvw corre-
lations between the downward motion of the plume and its
tilt to the south. Although these structures are not very
space-filling, their correlation appears to be felt in the
meridional stresses. The subsequent change in sign with
varying R, and R o leads to the corresponding reversal of the
zonal mean flow seen in Figures 5 and 6. The mainly nega-
tive meridional stress profile for R4 has its minimum shifted
to lower depths, and the relatively constant gradient leading
down to this provides the z-independent interior for the
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zonal mean flow of this case. These low R o, turbulent Rey-
nolds stress profiles do not simply reflect the rms velocity
profiles (as in the laminar cases), but rather exhibit the dif-
ferent degrees of velocity correlation.

The presence of mean horizontal motions implies that
there is a net vertical transport of horizontal momenta, and

this is exactly described by the Reynolds stresses shown in
Figure 8. The stresses, puw and pvw, can be considered as
the vertical transports of zonal and meridional momenta,

respectively, where a positive value indicates a net down-
ward transport of positive momentum. Figure 8 then shows
that in almost all cases there is a net downward transport of

positive (eastward) zonal momentum. Zonal momentum is
extracted from the upper layers and deposited in the lower
layers, with the strength of this transport decreasing with
increasing turbulence, owing to decorrelation of the
motions. In contrast, the transport of positive (northward)
meridional momentum switches from downward to upward

as the degree of nonlinearity or the rotational influence is
increased.

3.8. Spiralling Mean Flows and Helicity

These simulations also reveal that the direction of the

total mean flow has a tendency to spiral with depth. Figure
9 exhibits the vector sum, (U(z)), of the mean flow com-
ponents, (u(z)) and (v(z)), at each depth, shown in a three-
dimensional format for the case TI as an example of such
behavior. An arrow is drawn at chosen depths, z_, pointing
in the direction of the vector sum, (U(z_)), with its length

proportional to the amplitude, I(U(zi))[. The combined
picture represents what would be seen if a stack of weather
vanes were placed in the fluid, where the steady mean flows
alone were operating. It is typical for at least part of this
weather vane plot to align itself such that the arrows
describe a spiral with depth. The sense of the spiralling in
these simulations may be measured in terms of the angle
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vane) of the time-averaged total mean flow velocity, (U(z)), for case T1,
demonstrating the cyclonic and anticyclonic spiralling nature near the

upper and lower boundaries respectively. Only a subset of the 96 available

z_ depths are shown for clarity.

that the mean vector subtends with the x-axis as a function

of depth,

q_.(z) = tan- 1 [(v(z))/(u(z))] , (14)

and its derivative,

(u(z))aAv(z)) - (v(z))a,(u(z))
a,*u(z) = [(u(z))2 + (v(z))2] (15)

Where the angle is increasing with depth (c_z_ . > 0), the
sense of the spiralling is cyclonic, and the vector arm swings
in the direction of the rotation as depth increases. Where
the angle decreases (_= _, < 0), the spiral is anticyclonic.

Figure 10 plots the angle, _,, with depth for some of the
simulations, and some trends may be observed. In general,
the mean vector spirals cyclonically (with increasing depth)
near the upper boundary and reverses to spiral anticy-
clonically near the lower boundary. The spiralling is prob-
ably related to Eckman-like boundary processes, and thus
the effect is more noticeable at the upper surface where the
thermal boundary layer is thicker, owing to the stratifi-
cation. The laminar cases (e.g., L I, L2, and L3) appear to

spiral significantly throughout the whole layer, with the
change from cyclonic to anticyclonic near the center of
gravity of the layer. The turbulent cases (e.g., R2, R3, and
T1) tend to consist of an interior of relatively small-
amplitude, more disorganized mean flows connecting the
two boundary layer spirals. Away from the boundary
layers, if the flow is turbulent in the interior, the motions are
generally enhanced toward isotropy by the rotation (see
Paper I). The scales are small compared to the density scale
height, and the motions turn over quickly compared to the
inertial time, therefore sensing both the stratification and

the rotation only weakly. The sense of the spiralling is there-
fore more random in the interior. However, some rapid
swings of the mean velocity vector across angles, observable
in Figure 10 as more horizontal portions of the curves,
appear consistently in many of the simulations. This rapid
spiralling is associated with the zeroes of the mean veloci-
ties. When the mean components become small,
(</./)2 .._ ([?)2) decreases and the rate of spiralling, d= @,(z),
increases. Physically, this spiralling is only rapid because
the vector is close to the origin, so that small changes in (u)
or (v) translate to large angular displacements. As dis-
cussed earlier, there is often a zero of both (u) and (v)
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FIG. 10._he sense of the spiralling of the mean flows. Plots of the

variation of the angle, _,, between the x-axis and the (time-averaged)

vector mean flow direction, (U(z)). (a) Cases LI, R2, and TI, where the

rotational influence is roughly constant but the nonlinearity increases. (b)
Cases R1-R4, where the Reynolds numbers are similar, but the rotational

influence increases (Ro decreases).

associated with the center of gravity of the cell at roughly
z = 0.75 in many of the solutions shown, and the spiralling
is sensitive to these points.

The spiralling of the mean vector exhibits a definite hand-

edness that generally switches sign in the interior. This
handedness suggests that the helicity of the flow may be of
some interest. Figure 11 displays time and horizontal aver-
ages of the helicity, H = u • (V x u), for the same simula-
tions. Clearly, the mean helicity is generally positive in the
upper regions and negative in the lower regions for all cases.
Although this result concurs with the handedness of the
mean spirals, the two are not directly related. The mean
helicity is dominated by the vertical vorticity of vertical
motions. The mean flow does indeed possess helicity, but
this is constructed entirely out of horizontal vorticity, since
the mean cannot possess vertical vorticity. Indeed, on
examination, the mean flows contribute very little to the
mean helicity, the majority arising from the fluctuating
velocities.

The distinct mean helicity profiles shown are indications
of the dominance of coherent structure (plume) dynamics
within the overall flow. In the upper thermal boundary
layer, a cellular downflow network is formed by the con-
vergence of horizontal motions. Major coherent structures
or plumes are created at the interstices of the network by
further convergence of flows along the downflow lanes. The
formation of such downflowing plumes by local con-
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FIG. 11.--Mean helicity, H = u • 07 × u), as a function of depth for the

cases L1, TI, and R1-R4. For this wide range of solutions, the mean

helicity profile is generally positive in the upper portion of the layer and

negative in the lower.

vergence of flows requires them to spin up under the back-

ground rotation in order to conserve angular momentum
locally. Hence, all downflow structures near the upper
boundary must be cyclonic. Since the total horizontal diver-
gence (and similarly the total vertical vorticity) must be zero
in any horizontal plane, the upflows must diverge and be
anticyclonic. These effects enforce a positive helicity in the
upper portions of the domain. If the simulations possessed a
midplane reflection symmetry, as they would if the equa-
tions solved were Boussinesq (with symmetric boundary
conditions), then an equal and opposite sign of helicity
would be expected from equivalent process at the lower
boundary. At the bottom, upward-directed plumes would
be formed from locally converging horizontal flows and
would spin up cyclonically. The opposite sense of helicity
would result since the vertical motion has reversed, while

the cyclonic vertical vorticity is retained. This is indeed
observed in Boussinesq simulations (Julien et al. 1997). The
equivaIent effect at the lower boundary in the current simu-
lations is similar, but it is diminished by the lack of mid-
plane symmetry in the compressible equations under the
imposed stratification (and nonsymmetric boundary
conditions). The asymmetries retard plume ejection from
the lower boundary in favor of downflow-dominated con-
vection driven from the upper surface. Rising plumes are

forced to expand under the imposed stratification counter-
acting their natural helicity, enhancing the positive surface
helicity but undermining the negative helicity at the lower
boundary. However, even in this scenario, the splashing and
subsequent divergence of the strong downflow structures
against the lower boundary enforces some upflow con-
vergence, thus still providing a negative mean helicity at the
bottom. The impenetrable boundary conditions in these
simulations are convenient but artificial, and such lower

boundary effects may change in the presence of more
relaxed bottom boundary conditions, such as in studies of
penetrative convection (Clune, Brummell, & Toomre 1997).

4. CONCLUSIONS

The localized f-plane domains of rotating compressible
convection considered here and in Paper I have provided a
means to obtain sufficient spatial resolution in the simula-

tions to study fully turbulent flow regimes. Though such
local models represent a major compromise compared to
dealing with the full curved geometry of a rotating shell,
they offer a route for examining the form of the mean zonal
and meridional shearing flows that coexist with turbulent
convection influenced by rotation. The approach here,
which deals with a perfect gas and idealized boundary con-
ditions, has sought to focus on the intrinsic dynamical
properties of the coupling of turbulent convection with
rotation. Certainly these studies have simplified the physics
to the extreme, since effects of ionization, magnetic fields,
radiative transfer, and variations of the fluid properties have
all been ignored. Such processes could in due course be
incorporated, though a higher priority has been to attain
sufficiently turbulent flow conditions to assess the character
of the associated mean flows and to elucidate possible turb-
ulent momentum transport mechanisms that may lead to
notable differences in the generation and maintenance of

the mean flows. Though the recent helioseismic deductions
pertaining to differential rotation deep within the solar con-
vection zone have served as a major stimulus for these
studies, it is clear that the Reynolds and Prandtl numbers
accessible in present turbulence simulations are still many
orders of magnitude away from the solar conditions
(Brummell et al. 1995). These studies then have a primary
role in helping to develop and refine our physical intuition
about the nature of the mean flows that can coexist with
turbulent convection, while recognizing that more turbulent

states may well experience a somewhat different set of
dynamical rules.

All of the cases of rotating compressible convection
studied here possess mean flows in both the zonal and
meridional directions. The amplitudes of the mean flows
depend on the degree of nonlinearity of the convection (as
measured by the Reynolds number) and the influence of
rotation (as measured by the Rossby number), but in
general contain on the order of a few percent of the total
kinetic energy. Increasing the degree of nonlinearity in the
simulations while retaining the same global rotational influ-
ence reduces the amplitude of the mean flows in the interior
of the layer, where the scales of convection become smaller,
more isotropic, and decorrelated with the increased degree
of turbulence. When the rotational influence on turbulent

solutions is significant, an alignment of coherent vortex
structures with the axis of rotation (confined to the vertical-

meridional plane) is observed, accompanied by modest
prograde zonal mean flows in the interior. This turbulent
zonal flow profile is distinct from the laminar and weakly
rotationally influenced mean profiles. The laminar profiles
are strong, substantially sheared, and produced from posi-
tive Reynolds stresses generated by the laminar tilting of
streamlines and cellular boundaries. The turbulent mean

flow profiles are weak owing to the chaotic decorrelation of
the motions, yet when the rotational effects are strong
enough, they can become dominated by the vertical-
meridional interactions in the aligned vortical structures.
The meridional Reynolds stress can change sign in accord-
ance with these correlations, reversing the zonal flow to

form a small-amplitude but constant prograde zonal mean
across the interior of the layer. The interplay between the
laminar streamline alignment, which can generate both
zonal and meridional mean flows, and the turbulent struc-

tural alignment, which favors constant zonal flows, is quite
delicate and dependent on the simulation parameters.
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Thenearlyuniformzonalmeanflowwithdepthrealized
in thesesimulationsis intriguing,for it sharessomeofthe
featuresof thesolardifferentialrotationprofilesinferred
fromhelioseismology(e.g.,Thompsonetal.1996).Thesplit-
ting of p-mode frequencies suggest a nearly constant
angular velocity with depth over much of the convection
zone. The angular velocity observed near the surface, where
the rotation is faster at the equator than near the poles,
prevails throughout the bulk of the convection zone with
little radial dependence. This profile culminates in a region
of strong shear at the base of the convection zone, known as
the tachocline (e.g., Spiegel & Zahn 1992), where the vari-
able angular velocity with latitude appears to adjust to

nearly solid body rotation in the deeper radiative interior.
There is also a thin boundary layer of shear near the
surface, where the angular velocity increases with depth at
low and intermediate latitudes. The simulations presented
here can (for certain parameters) likewise possess a
constant-with-depth zonal mean profile in the interior
accompanied by prominent regions of shear near both the
upper and lower boundaries. However, such shearing fea-
tures deduced from these f-plane convection models must
be viewed with caution, for the boundary regions in the
model involve drastic simplifications. For example, near the
top of the model domain, the effects of radiative transfer
and ionization are ignored, and near the bottom, the flows
are abruptly turned by an impenetrable, nondeformable
boundary. New simulations are under way to relax the
latter constraint somewhat by allowing penetration from

the convecting layer into a lower stable layer of fluid (Clune
et al. 1997), and it remains to be seen how the shear survives
near the interface between the two layers. It is possible that
the mean flows in the turbulent interior may be sufficiently
decoupled from effects attributable to the precise boundary
conditions to possess properties that are quite robust.
Indeed, as well as the constant-with-depth profile in the

bulk of the layer, the model also yields zonal flows that have
greater prograde values at lower latitudes than at higher
latitudes, as shown in Figure 7b, thus exhibiting equatorial
acceleration with respect to the poles. In these simulations,
this appears to be due to the presence of turbulent and
laminar alignment mechanisms and whether they both act
(at low latitudes) or are both absent (at high latitudes).

The f-plane simulations here are carried out at very
modest Reynolds numbers as compared to those of the Sun,
and this may explain some of the discrepancies between
some aspects of the mean flows attained and those deduced
from solar observations. The sense of the zonal flow at the

surface found here (and in the calculations of Hathaway &
Somerville i986) is retrograde to the rotation, which is con-
trary to the observed solar result, although the interior of
the layer is correctly prograde. Though this prograde inte-
rior exhibits a tendency toward an equatorial acceleration
that concurs with the trend deduced from helioseismology,
the bulk of the solar convection zone exhibits a consider-

ably greater contrast in its angular velocity with latitude
than attained in these simulations. At odds with the solar

data, too, is the large amplitude of the meridional circula-
tion. In such local f-plane models, there is no restraint on
the north-south flow given the lateral periodic boundary
conditions, and thus by coupling via the CorioIis terms of
the mean equations, the zonal and meridional flows are of

comparable amplitude. In the correct spherical geometry,
the meridional flows are probably decelerated by con-

vergence of flows at the poles (and possibly the equator).
The local nature of the model does not take this into

account and thus probably overemphasizes the importance
of the meridional flows. No such convergence deceleration
exists for the zonal flows, and thus the results here for that
component may well be more robust.

The mean flows are time-dependent, exhibiting promi-
nent inertial oscillations, but when these effects are filtered

out, the remaining time-averaged mean flows typically
display a spiralling in the vector sum of their components
with depth. This result is akin to deductions from ring
diagram analyses of helioseismic data (e.g., Patron et al.
1995; Thompson et al. 1996) which reveal that a moderate
mean flow exists below the solar surface whose direction

appears to spiral with depth. The current simulations
suggest that such spiralling arises from rotating boundary
layer effects and may be indirectly linked to the nature of
plume or coherent structure formation under the influence

of rotation. Convergent motions required to form down-
flows at the upper surface necessarily spin up cyclonically,
which, coupled with the compressible expansion of upflows
in these stratified layers, yields positive helicity near the
upper boundary, similar to the handedness of the spirals.
The nature of the mean helicity profile here, being generally
positive in the upper portions of the layer and negative in
the lower, fulfils a necessary requirement for the success of
some current solar magnetic field dynamo models. Interface
dynamo theory has suggested that regions of negative hell-
city and positive radial shear of the mean zonal momentum
must coincide, or be closely coupled, at the base of the
convection zone in order to reproduce the observed migra-
tion of sunspots toward the equator (e.g., Stix 1991;
Weiss 1994). The mechanisms suggested by these f-plane
simulations for the production of shear and helicity at the
lower surface appear to be robust for most boundary condi-
tions. All that is required is that there be a deceleration of
the convective plumes or coherent structures as they
approach the boundary and a local conservation of angular
momentum under the rotational influence for plumes
leaving a boundary.

The inclusion of sufficient degrees of freedom, made pos-
sible by the local nature of the f-plane domain, has made it
feasible to study of the interaction of fully turbulent convec-
tion under the effects of rotation. This has revealed features

in the resulting mean zonal flows that bear some interesting
similarity to aspects of solar observations. Such results
encourage work toward more realistic global spherical shell
modeling of convection that can encompass fully turbulent
regimes.
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Fro.2.--(a)ThecomputationaldomainofcaseR4isshowninverticalvelocityatoneinstantintime,withdark(blackanddeepred)colorsexhibiting
downflowandlight(yellowandwhite)tonesshowupflow.Alayerneartheuppersurfacehasbeenmovedawayfromthedomain,andasectionoftheinterior
hasbeencutaway.Thesmoothcellularsurfacecontrastswiththesmallerscaleturbulentinterior,asexhibitedbythevisiblehorizontalplanes.Onthe
verticalplanes,verticalflowscanbeseenspanningthewholedepththattendtoalignwiththerotationinthey-zplaneandyetshownoparticular
organizationinthex-z plane. (b) The same case shown in enstrophy (vorticity squared) where bright (white and yellow) and opaque portions have high
enstrophy, and dark (purple and blue) and translucent regions are low vorticity. Strong downflowing vortical coherent structures can again be seen aligned
with the rotation vector.
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